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Abstract 

A correct calculation of the scale factor between the 
diffraction data of isomorphous crystals is shown on 
the basis of a statistics criterion. This scale factor 
requires no additional refinement, improves the signal- 
to-noise ratio of difference Patterson maps and Wil- 
son's statistics and allows an estimation of the degree of 
non-isomorphism. The method has been tested for the 
3/~ data sets of protein y-crystallin crystals and a few 
of its heavy-atom isomorphous derivatives. 

Introduction 

The solution of protein crystal structures by the 
multiple isomorphous replacement method requires 
accurate determination of the parameters of the added 
heavy atoms. It is well known that the structure factor 
of heavy atoms can be determined from the expression 

FHI = Fou I -Fot ,  (1) 

where FpH i is the structure factor of the ith reflection of 
the heavy-atom derivative, Foi, Fui are the protein and 
heavy-atom components which are, strictly speaking, 
related only to the same single crystal. 

In practice, the amplitude Fot is measured from one 
crystal, Fpu I from another and Fpn i is usually brought 
to the scale of the native protein crystal by applying a 
scale coefficient k I. Therefore, 

FHi = k, (Fffut)- F~ = k, (F~ + FD,)-  F~, 

where superscripts N and D apply to the data obtained 
from the native and derivative crystals, respectively. 

The contribution of heavy atoms can be calculated 
correctly if 

ki FDi- Fl~i= O. 

Hence, a correct scale factor can be determined as 

N D k i = Fpi/Fpi, (2) 

assuming that the vectors FoN and FoD have the same 
directions. 
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It should be noted that the assuml~tion of perfect 
isomorphism between the atomic positions in the native 
crystal and in the native component of the derivative 
crystal leads to independence of the coefficient k i of the 
value of sin 0/2. 

Therefore, the scale factor for scaling up the 
heavy-atom derivative relative to the parent data can be 
obtained by averaging (2) over a large number of 
reflections. Hence, the scale factor is determined as 

= = N D kpn ki (Fpi/rpi)" ( 3 )  

In practice it is impossible to calculate kpu from (3) 
because the values of FoD/ are unknown. A substitution 
of Fo D by F~H t leads to errors in the value of scale factor 
and to distortions of the difference Fourier synthesis 
(Blundell & Johnson, 1976). Various schemes have 
been used to avoid these problems (Green, Ingram & 
Perutz, 1954; Blow, 1958; Kraut, Sieker, High & 
Freer, 1962; Singh & Ramaseshan, 1966; Arnone et 
al., 1971; Eklund, Samama, Wallen & Branden, 1981) 
and to adjust the scale factor to compensate for the 
additional scattering power of the heavy atoms. Some 
of them required knowledge of the details of heavy- 
atom substitution (Green et al., 1954). Others (Kraut et 
al., 1962) did not need these data, but estimated the 
correct scale factor to within about 4%. An improved 
value of the scale factor was then obtained using 
iterative procedures. Therefore the problem of scaling 
of heavy-atom-derivative data to the native set proved a 
difficult one and no entirely satisfactory solution was 
found. 

In this paper a method of calculation of a correct 
value of the scale factor directly from the experimental 
data is proposed using a definite statistics criterion. 

Calculation formulae for the scale factor 

From (1) the structure amplitude of a heavy-atom 
derivative can be written as 

D 2 D D (FpHi) -~- ( F D i )  2 + 2FpiFHiC°S Yi + ( F D i )  2, 

where Yi is the angle between vectors FoD and FDi  . 
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Using (2) we can write 

D 2 N 2 (Fpm)/(Fpi ) = k? 2 (1 + 26ic0s Yi + 6~), (4) 

D D where 6 i = FHi/F~,i and 
D N F~,Hi/Fpi = k/-'l[(1 + 6 e cos yt) 2 + 6~ sin E yi]l/21 

Making the approximation that 

62 sin 2 yi/(1 + 6 i cos 6i) 2 < 1, (5) 

one can obtain 

D N k~-ll[ 1 + 6 i cos F~Hi/Fpi ~-- Yi 
+ 6 2 sin 2 )'i/2(1 + 6 i cos yi)]l 

since (1 + X) 1/2 ~ 1 + X/2 if,z < 1. 
It is easy to show that the right-hand side of this 

expression is always positive if 6 t < 1, and so 

D N FpHi/Fpi = k/-1 [1 + 6 i cos Yi 

+ 6 2 sin 2 Yi/2(1 + 6 i COS Yt)]" (6) 

For the centric case, sin y~ = 0 and one can use (6) if 
6~ < 1, that is 

FOi < Fp D. (7) 

By averaging (6) over a large number of reflections it is 
easy to obtain 

--1 D N (k~-D)eentri ¢ = (rpHi/Fpi). (8) 

For the acentric case, it is easy to show that the 
condition of (5) is always correct if 6 i < l/V/2, that is 

FDi < F~il V/2. (9) 

The average value of 62 sin 2 7i/2(1 + 6 i cos Yi) can be 
obtained by a series expansion of 1/(1 + 6~ cos Yi). 

For this case we have 

[62 sin 2 7i/2(1 + 6i cos yi)] ~_ 6~/4 

since sin 2 ~, = cos 2 7 = 1/2 and cos 4 ), = 3/8. Hence 

. N 62/4). (10) (FpHi/Fpi) ~_ k71 (1 + 

But from (4) 
D 2 N 2 (FpHi) /(Fpl) = k~ -2 (1 + 6~). 

Therefore, if 6 t < 1, we can write 

D 2 D 2 1/2 62/2). (11) [(FpHi) /(Fpl) ] ~k71 ( 1  + 

From (10) and (11) we finally obtain the scale factor 

--1 D N D 2 N 2 1/2 (12) 
(k~H)acen t f l  c ~-- 2(FpmlFpi) - [(FpHi) I(F.i) ] . 

Therefore, by using (8) and (12) it is possible to 
determine the value of kpz from measured data, if the 
contribution of the native component in the used 
reflections exceeds the contribution of the heavy-atom 
component as determined by (7) and (9). 

Now we can introduce a combined value 

kpH= [Wl(kpH)eentrl ¢ + w2(kpH)acentric]l(wl + Wz), (13) 

where wl and w 2 are numbers of centric and acentric 
reflections, respectively. 

Statistical criterion for selection of scaling reflections 

Now__let us ass___ume that Fpi and Fui are non-correlated 
and Fpi > F m. It is clear that an infringement of 
conditions (7) and (9) is less probable if Fpi is large 
enough. In order to estimate the number of reflections 
of the data set which may be used in the calculation of 
the scale factor we shall obtain the probability 
distributions of the structure amplitudes. 

Let the probability distributions of the structure 
amplitudes of the native and heavy-atom compounds 
be Pp(F) and PH(F). Denote by F 0 the minimum value 
of a structure amplitude of the native crystal which 
may be used in calculations. 

Suppose that the structure amplitude Fpm of the 
derivative crystal contains F < F m < F + dF and F 0 < 
Fpi < F for the centric case or F 0 < Fpi < v / 2 F  for the 
acentric ase. It is clear that this structure amplitude is 
not in accordance with (7) or (9). The probability of 
such reflections can be determined as the probability of 
the compound event 

r(F) dF = q(F) PH(F) dF, 

where 

FI 

q(F) = f Pp(F)dF 
Fo 

is the probability that the structure amplitude of the 
native component lies between F o and F 1 (F1 = F for 
the centric case and F 1 = v / 2 F  for the acentric case). 
Therefore, for the interval between F o and c~, we can 
write 

oo 

R (F) = f q(F) PH(F) dF. 
Fo 

The probability that the structure amplitude of the 
native crystal lies between F 0 and oo can be defined by 

oo 

Q(F) = f Pp(F) dF. 
ro 

Hence the part S of the total amount of used 
reflections which are not in accordance with (7) or (9) if 
Fp N > F o is determined by 

oo oo 

S(F0)  = f q(F)PH(F)dF/ f Pp(F) dF. (14) 
Vo ~'0 

Assuming that Wilson's statistics (Wilson, 1949) are 
obeyed, we can write for the centric case 

Pv(F) = l/(2srF-~p2) in exp 

PH(F) = 1/(27rFJ t2) '/2 exp [-F2/(2t 2 FJ)]; 
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and for the acentric case 

Pp(F) = 2(F/F~)exp (--F2/F~), 

PH(F) = 2[F/(t 2 F~)] exp [-F2/(t 2 F~)]; 

where t 2 2 2 = FH/F p. Substituting these expressions into 
(14) and integrating the latter it is easy to show that for 
the acentric ease 

S(F0)acentrlc = exp [--F2/(t 2 F 2 ) ] -  [1/(t 2 V/2 + 1)1 

× exp [ - (F~/FT)(v/2  - 1 + l/t2)]. (15) 

For the centric ease it is convenient to use the 
expression 

oo oo 

S(F0)eentr, ¢ = • q'(F) PH(F) A F I Y  Pp(F) AF, (16) 
Fo Fo 

where 
F 

q' (F)= ~ Pp(F) AF. 
Fo 

The value of t can be determined from the expression 
(Crick & Magdoff, 1956) 

2 2 1/2 I[(F2n- F2)2]I/21/F2= g(Fn/Fp) = gt, (17) 

where g = 2 for the centric case and g - V/2 for the 
acentric case. Since usually the left part of (17) is less 
than 1, we can suppose for all practical cases that t 2 < 
0.25. 

Substituting t 2 = 0.25 into (15) and (16) one can 
calculate valu_._es S(F0)centr i  e and S(F0)aeentrlc as  func- 
tions of Fo/(F2) u2 for different F 0 (Fig. 1). 

It is evident from Fig. 1 that the values ofS(F0)centrl c 
2 1/2 > and S(F0)aeentrlc are small enough if F o / ( F p ) n -  1. 

[S(Fo)centr i  c "~ S(Fo)acentrlc "~ 1% if F o = (F~,)2 1/2]. 
Therefore, using (8) and (12), we can obtain the correct 
value of scale factor for all practical cases if 

F0 2 1/2 = ( F p )  . (18) 

S(Fo)% 

3o 

2o 

4 

10 . 2 1 

0 0 .2  0 . 6  t .0 

Fig. 1. Relationship between the relative number of reflections 
leading to errors in calculation of scale factor and value of 
F0/[(~f)2 I,,2. Curve (1) centric case; curve (2) acentric case. 

Results 

The efficiency of this method of scaling has been tested 
in calculations of scale factors of different derivatives of 
7-crystallin IIIb from calf lens at 3/~ resolution. Data  
were collected on screened precession photographs. 
Three or five film packs were taken per crystal. To 
bring all the planes of native or derivative data to a 
common scale, the inter-layer scaling factors were 
determined by the method of Hamilton, Rollett & 
Sparks (1965). The scale coefficients calculated using 
(13) have been compared with relations of ~.F2/ 
X F2n. The Wilson plots for these cases are shown in 
Fig. 2. In the first case we have omitted all reflections 
with FpS/< 2 1/2 (Fp) , in the second case we have omitted 
all reflections with FuN/< 2 op or Fpm _< 2 trpH, where trp 
and crpf/ are mean values of standard deviations. It is 
evident from Fig. 2 that the scale factor calculated via 
the relations of ~ FE/y  F~, 2 considerably depends on 
(sin 0/2) 2 . 

The same effect of seeming imperfect isomorphism in 
this case is shown in Fig. 3, where the relations 
2[ IFpn - Fpl/(FpH + FD)] ---- 6 F  are plotted as functions 
of (sin 0/2) 2 . We suppose that the source of these 
seeming distortions of isomorphism is a larger con- 
tribution of the heavy atom to the value of ~ FEn in the 
second case. For the first case the isomorphism appears 
to be more perfect for all derivatives. 

In/~ t No mersa l y l  
0.7 2 

0.3 I I I i! 
O.(X)7 0.014 0.02, ( Sin.. 2 "~) 

0.7 Hg ( SCH 2 CH 2 NH 5 Cl )2 

0.5 

0.3  I I 
o.oo~ 0.0,4 0.02, (~o~)~=_~ 

0.2  

-0.2 

=. 

Hg (SCH2CH2OH)2 
2 

-" , " ~ f " c = , ~ ; ~ - t .  
o 0.014 0.021 (~inA) 2 

Fig. 2. Wilson plots for calculation of scale factors of different 
derivatives of 7-crystallin IIIb. Curves (1) are calculated using 
the relation ~ (F~V)2/} (F~n),o 2. curves (2) are calculated using 
formula (13) of this paper. 
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Table 1. Comparison of scale factors for the isomorphous heavy-atom derivatives of 7-crystallin IIIb protein at 
3 A resolution calculated by different methods 

Method of calculation 

Proposed method: see Phase refinement program 
k~ = x (F~)2/~ (FOg)2 formulas (8), (12), (13) k' = 57 (F~2/Z (Fu°n) 2 (Ten Eyck & Arnone, 1976) 

Limit for structure Limit for structure Limit for structure Limit for structure 
Heavy-atom amplitudes: " amplitudes: amplitudes: amplitudes: 
derivative Fp~ <_ 2ap;F~°m <_ 2apn F Ui <_ [(F~)2l ,n FpU/< [(F~)2l,n Fp~ _< 2ap: F~°m <_ 2trpn 

(1) (2) (3) (4) 

k o 1.519 1.786 1.721 1.804 
Na mersalyl AB - 6 . 8 9 0  - 1.630 - 3 . 0 5 0  - -  

N 4464 2576 2576 4464 
k o 1-615 1-874 1.817 1-888 

Hg(SCH,COONa) 2 A B  --5.120 +0.810 -0 .121  - -  
N 5590 2821 2821 5590 
k 1.443 1.671 1.611 1.652 

Hg(SCH,CH2NHsC1) 2 A B  - 3 - 8 9 0  - 0 . 1 9 0  - 0 . 9 7 0  - -  
N 5298 2722 2722 5298 
k o 1.560 1.602 1.565 1.605 

KAu(CN)2 A B  - 1 . 2 7 0  - 1 . 0 1 0  - 2 . 7 8 5  - -  
N 5478 2836 2836 5478 
k 1.004 1.030 1.025 1-018 

Hg(SCH2CH2OH)2 A B  - 1-910 - 0 . 8 7 0  - 0 . 8 8 0  - -  
N 6199 2885 2885 6199 

Designations: k~ scale coefficient in the ith interval of (sin 0/2)2; kpu = k o exp 1-  AB(sin 0/2)2]; N number of reflections. 

~F 
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0.2 

~F 
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0.2 

0,1 

I I I I I 
0.005 0.010 0.015 0.020 0.025 SinO/2 --;-,  

- Hg (SCH 2 CH 2 NH 3C I )2  

_ 

I I I I I 
0.005 0.010 0.015 0.020 0.025 SinO 2 (--~-) 

Hg (SCH2CHaOH) 2 

I I I I I 
0,005 0,010 0,015 0.020 0,025 S inO)2 (-S-- 

Fig. 3. Plots of c~F = 2(IFpu - Fpl)/(Fpn + Fp) against (sin O/;t) 2. 
(1) Scale factor is calculated using the relation Z(F~2/y(F°n)2; 
(2) scale factor is calculated using formula (13) of this paper. 

The overall scale and temperature coefficients 
determined in different ways are shown in Table 1. The 
temperature coefficients determined from (13) are 
small enough and overall scale coefficients are close to 
that determined by the phase refinement program 
(Chirgadze, Sergeev, Fomenkova & Oreshin, 1981). 
Therefore, ignoring the reflections with Fp~ < (F2) 1/2 
and using (8), (12) and (13), we can obtain a correct 
value of scale factors without post-refinement even for 
such strong derivatives as Na mersalyl. 

The overall scale coefficients derived from the 
relation ~ F 2 / y  F2n on the same basis as the scale 
coefficients derived from (13) differ from those deter- 
mined by the phase refinement program to within about 
5% for strong derivatives and must be refined using 
an iterative procedure. 

Fig. 4 presents the UV 1/2 projections of the 
difference Patterson synthesis at 5 A resolution. The 
scale and temperature coefficients for Figs. 4(a) and (b) 
have been selected from columns 1 and 2 of Table 1, 
respectively. It is clear from Fig. 4 that the use of 
correctly calculated scale factors improves the signal- 
to-background ratio (about 20%) and eliminates some 
false peaks, whereas the principal peaks remain 
unchanged. 

The tests described here demonstrate that in a 
variety of cases the direct calculation of the scale 
factors improves the accuracy of isomorphous dif- 
ferences and allows one to evaluate the degree of 
isomorphism between the native structure and the 
native component of the derivative. However, it must 
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Fig. 4. Projections UV 1/2 of the difference Patterson synthesis of the Hg(SCH2CH2NH3CI) 2 derivative of ?-crystallin IIIb. Overall scale 

and temperature coefficients are calculated (a) using the relation .', (F~2/Z(Fgu) 2 and (b) using formula (13) of this paper. 

be added that the use of this principle changes 
significantly only the scale factors of the strong 
derivatives. For the weak derivatives these changes are 
small. Finally, it may be noted that the use of the direct 
method of calculation of scale factors does not require 
essential changes in the computer program. 

I am indebted to Dr Yu. N. Chirgadze for constant 
interest and help throughout this work. 
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Abstract 

The theory for the contrast of stacking faults and 
dislocations in electrons which have been scattered 
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inelastically is derived. Small-angle plasmon and 
single-electron scattering show similar contrast to the 
elastically scattered electrons. Phonon scattering by 
large angles away from strongly excited Bragg re- 
flections shows reversed contrast and small-angle 
phonon scattering gives better contrast for defects near 
the top of the specimen. 
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